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SUMMARY 
 
We describe the development and application of three power and voltage triangles that enable the 

power load flow equation parameters to be viewed on the triangles.   

1. The Load Flow Power Triangle contains the scalar quantities of the load flow equation on the 

triangle sides while the triangle angles capture the load flow equation angle information. 

2. Next, we apply a suitable scaling multiplier to the Load Flow Power Triangle sides creating 

the Load Flow Voltage Triangle.  The Load Flow Voltage Triangle shows the relationship of 

the Vu and Vl voltages on the PV curve at an operating point.   

3. Finally, we describe a Load Flow Voltage Discriminant Triangle as a hybrid of the other two 

triangles.  The Load Flow Voltage Discriminant Triangle is unique because it provides a 

solution to the load flow equation and indicates the closeness of the solution to the critical 

bifurcation point.   

We note throughout the paper, the results of the triangles are consistent with the findings in the 

literature in [ 1,2,4,5,7,9]. 

 

We present examples illustrating use of the Load Flow Voltage Triangle to identify buses with the 

worst Vl /Vu    voltage ratios from a large power system in Example 2.  In addition, we note voltage 

monitoring situational awareness opportunities for the system operator.  

 

KEYWORDS 
Load flow, triangle, voltage discriminant 

 

 

 

 

 

 

 

21, rue d’Artois, F-75008 PARIS CIGRE US National Committee 

http : //www.cigre.org  2016 Grid of the Future Symposium         



  1 

 

Introduction 
 

In the following, a variable followed by an angle symbol denotes a complex phasor quantity ( ρ∠β  ) 

while a variable without an angle symbol ( ρ ) denotes the magnitude of the phasor quantity.   

 

In this section we lay the groundwork to express the load flow equation in polar form.  The ρ∠β polar 

component combines the series impedance element with the associated power flow delivered by the 

element.  The ρ∠β polar form allows equations to be viewed in a concise graphical triangle format 

and provides us with intuitive insights.     

 

Using the system in Figure 1, we define ρ∠β equal to the complex product [(P+jQ)* (R+jX) ] where 

the subscripted  * denotes the complex conjugate.  The load flow equation can be written as 

 

V∠φ = E∠0 - ρ∠β/V∠-φ (1) 

 

 
 

Figure 1 – Simple circuit for load flow equation 

 

Separating (1) into its real and imaginary parts we get: 

 

EVcos(φ) = V2 + ρ*cos(β) (2) 

-EVsin(φ) = ρ*sin(β)  (3) 

 

We eliminate the phase angle φ from (2) and (3) by applying solution techniques similar to those used 

in references [1] and [2]. 

 

The resulting fourth degree polynomial expressed in polar form is: 

 

0 = V4 + [2ρ*cos(β) – E2]V2 + ρ2 (4) 

 

The fourth degree polynomial makes V a function of E, ρ, and β. 

 
Contraint (5)  needs to be true for a valid solution. 

 

E2 > 2ρ[1+cos(β)]  - Two unique pairs of real roots   (5) 

E2 = 2ρ[1+cos(β)]  - Pair of identical roots    (6) 

E2 < 2ρ[1+cos(β)]  - Complex roots     (7) 

 

This approach does not support intuitive insights to view V as a function of E, ρ, and β.  The 

remainder of this paper identifies a more practical approach by employing the Load Flow Power, Load 

Flow Voltage, and Load Flow Voltage Discriminant Triangles in the next section. 
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Triangle Descriptions 
 
Load Flow Power Triangle 
 

The Load Flow Power Triangle in Figure 2 encapsulates the load flow equation (1) parameters E, V, 

and ρ as scalars.  You will observe that V2, EV, and ρ lay on the triangle sides.  Additionally, the 

triangle angles contain information on (1) φ and β parameters as scalars. 

 

 

 
 

Figure 2 – Load Flow Power Triangle  
 

Applying equation (6) to (4) we find V2 equals ρ at the critical bifurcation point.  Consequently, the 

Load Flow Power Triangle becomes an isosceles triangle for this scenario.  We use an isosceles 

triangle to solve simple lagging, unity, and leading power factor scenarios in Example 1 below. 

 

Load Flow Voltage Triangle 

 

We note that (4) has two distinct positive real voltage solutions for constraint (5).  In the context of a 

PV curve, let Vu symbolize the stable upper solution while Vl denotes the unstable lower solution.  

Making use of Vieta’s formulas in reference [3] on (4), it can be shown the product of the voltage 

solution magnitudes Vu times Vl equals ρ.  In a more general way (8) below incorporates the phase 

angle information subject to the constraint the voltage phase angles are referenced to the voltage E∠0. 

 

Vu
* Vl

*  = ρ∠β  where* represents the complex conjugate of the voltages Vu∠φu and Vl∠φl. (8)  

 

Applying (8) to the Load Flow Power Triangle, we constructed the Load Flow Voltage Triangle in 

Figure 3. 

 

Figure 3 – Load Flow Voltage Triangle 
 

The Load Flow Voltage Triangle shows the relationship of  E, Vu, and Vl voltage magnitudes 

and the associated phase angles φu, φl, and β.  Observe that the angle between E and Vu is φu
* 
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where * denotes the conjugate value.  At the apex of the standard PV curve, we know Vu 

equals Vl.  Therefore, we define the Triangle Voltage Stability Index (TVSI) as the ratio of 

Vl/Vu voltage magnitudes.  When TVSI equals 1, then we are at the critical bifurcation point. 

 

In this discussion, we assume the impedance Z equals the  |R+jX| magnitude.   From (1) and 

(8) it can be shown the voltage Vz equals Vl where Vz is the voltage drop across the series 

impedance Z.  Consequently, TVSI is similar to defining the TVSI as the ratio of Vz/Vu 

magnitudes.  This is consistent with reference [4] which notes the voltage drop across the 

transmission impedance equals the load voltage at a maximum power condition. 

 

We demonstrate the practical application of the triangle in Example 2 below. 

 

In [8] the voltage stability indices use impedance and voltage data to calculate the indices.  In 

our approach, we calculate the indices from the Vl/Vu voltage magnitudes ratios.  

 
Load Flow Voltage Discriminant Triangle 
 

The Load Flow Voltage Discriminant Triangle in Figure 5 is a composite of the Load Flow Power and 

Load Flow Voltage triangles.  In developing this triangle, we discovered the real component of the 

receiving voltage Vu equals E/2 + ∆, implying ∆ could be used as a measure of voltage stability.  

When ∆ equals zero, then Vu equals Vl. 

 

 

 
Figure 5 – Load Flow Voltage Discriminant Triangle 

 

By knowing E, Vu, and φu from a solved load flow study or state estimator run, we can readily 

calculate ∆ using equation (9).  We utilize (9) in the analysis for Example 2. 

 

∆ = Vu*cos(φu) – E/2  (9) 

 

When ∆ equals zero in (9), the loci of critical voltage is given by (10). 

    

[Vu/E]cos(φu) = ½  (10) 

 

Equation (10) agrees with reference [5] findings.   

 

We also note from Figure 5, the real component of Vu∠φu equals E/2 when ∆ equals zero.   

 

This triangle can provide the solution to the load flow equation by calculating ∆ from the interior 

triangle sides.  From Figure 5 we can deduce ∆2
. 

∆2 = (E/2)2 - ρ*cos(β) – [ρ*sin(β)/E]2  (11) 

The complex voltage solutions Vu∠φu and Vl∠φl are then given by: 
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Vu∠φu = (E/2 + ∆, -ρ * sin(β) / E ),  and  (12)   

Vl∠φl = (E/2 -∆, -p * sin(β) / E).  (13) 

 

Equations (12) and (13) are consistent with reference [9] findings.   

The Voltage Discriminant Triangle is unique in providing a solution to the load flow equation along 

with an indication of the closeness of the solution to the critical bifurcation point.  The size of the 

Voltage Discriminant ∆ is used to identify potential voltage problems in Example 2.  We outline the 

derivation of (11) below. 

1. Draw the median cevian line segment from the π-β vertex to the E/2 midpoint.    

a. Use Stewart’s Theorem [6] on the median to calculate the cevian line segment length. 

i. Cevian length2 = [2Vu
2 + 2Vl

2 – E2] / 4 

ii. Apply Vieta’s sum of roots formula [3]  and  equation (4)    

1. Vu
2 + Vl

2 = E2 - 2ρcos(β) 

b. After simplifying, we arrived at the median cevian length noted in Figure 5.  

2. Draw a cevian line segment from the π-β vertex perpendicular to E. 

a. Apply Law of Sines 

i. sin(φu)/Vl = -sin(β)/E 

ii. Replace sin(φu) with Im(Vu) / Vu 

iii. Multiply 2ai by Vu * Vl magnitudes 

b. Using Vu and Vl magnitudes, apply (9) and simplify. 

c. After simplifying we arrive at the cevian length noted in Figure 5 

i. ρsin(β)/E 

3. Equation (11) follows from 1b and 2ci.   
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Examples 

Example 1: Lagging, Unity, and Leading Power Factor 

In this example, we are using the circuit depicted in Figure 1.  

This example demonstrates the application of the triangles to three simple voltage stability problems at 

the critical bifurcation point. At the critical point, we know from Figure 3 that Vu equals Vl magnitude.  

Consequently, we utilized standard isosceles triangle math in this example. 

Calculate the per unit receiving Vu voltage, phase angle φu, and real power using the Load Flow 

Voltage Triangle and equation (8) for the 0.9 lagging, unity, and 0.9 leading power factors.  

Assumptions: 

E = 1 PU 

Z = j0.1 PU 

TVSI = 1 

We demonstrated the triangle math with the 0.9 leading power factor load. 

For the 0.9 leading power factor: 

1. Solve for β given ρ∠β equals (0+0.1j)* S* 

a. β = 90 +ArcCos(0.9) ~ 115.84 degrees 

b. Use 180 -β in triangle ~ 64.158 degrees 

2. Vu equals Vl at the apex of PV curve.  Therefore the associated voltage angles are equal. 

a. φu = φl = -57.921 degrees 

i. [180 – 64.158] / 2 

3.   Use SAS triangle math to solve the triangle since we have a side with E = 1, and two angles 

φu*, and 180 -β.  We used a HP Prime calculator triangle solver application to solve for Vu 

and Vl. 

a. Vu = 0.9414@-57.92° and Vl= 0.9414@-57.92° 

4. Using equation (8) we solved for the real power P. 

a. Vu*Vl/Z*PF = 7.977 PU power 

We summarize the results in Table 1 for all the scenarios. The voltage Vu and phase angle results 

compare closely with the graphs in [7]. 

 

Given: Power Factor (PF) 
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E = 1 PU 

Z=0.1j PU 

TVSI = 1 

0.9 Lagging Unity 0.9 Leading 

ρ 0.348216 0.5 0.886352 

β  64.158° 90.° 115.842° 

Vu  0.590 0.707 0.941 

uφ  -32.079° -45.° -57.921° 

P+jQ 3.1339+j1.5178 5.+j0. 7.9771-j3.8635 

∆ 0 0 0 

Table 1 – Triangle Voltage Stability Index TVSI 

We believe that at the lagging and unity power factors, the system operator would receive ample 

warning on the voltage Vu magnitude of an impending voltage problem through a state estimator alarm 

system.  However, at the leading power factor scenario, the operator may not be aware of a pending 

voltage problem since the voltage magnitude looks respectable.  Consequently, we believe the 

operators need to become aware that voltage problems are related to the sending in voltage E, the 

phase angle φu, the receiving voltage Vu, and the associated load PF. TVSI would be a relatively 

simple way to achieve this awareness. 

Example 2: System Study Report 

In this example we used a sanitized AEP load flow case.   

In the example below, we use a PSS®E load flow and a custom PSS®E IPL program to calculate the 

TVSI on hundreds of circuits after applying thousands of contingencies to each circuit.  The PSS®E 

IPL program utilizes equation (9) to initially identify circuits closest to the critical bifurcation point. 

We believe ∆ is a more sensitive indicator of voltage problems since ∆ has the units of voltage 

whereas the TVSI is a dimensionless ratio of two voltages.  However, we still report the results as 

TVSI because we believe TVSI has a more intuitive feel with the end user’s visual attachment to PV 

curves. 

Our basic approach pairs a monitored circuit branch with an associated contingency simulation. The 

PSS®E IPL program uses the following data:  

1. Sending in voltage E 

2. Receiving voltage Vu 

3. Phase angle φu between E and Vu. 

4. Calculates ∆. 

5. Repeat for all monitored circuits and contingencies. 
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6. Sort by the ∆ magnitude and report the associated TVSI results.  A lower ∆ indicates a 

potential voltage problem.  

 

 

Table 2: Voltage Stability Index Summary 

PSS®E reports the 05RYAN 138kV bus voltage at 126.2-kV for the double contingency in row one.  

The vector voltage drop across the RYAN -ANU 138-kV path is in the neighbourhood of 72-kVKv 

and the associated TVSI is 72/126 ~ 0.57. 

The program identified a relatively high impedance path from RYAN –ANU.  With the application of 

the double contingency outages, the power flow increases dramatically through the high impedance 

path which results in a larger vector voltage drop across the path.   

   

 

Conclusion 

In this paper we describe a family of power triangles that enable the power load flow equation to be 

viewed graphically.  In particular, at the critical bifurcation point, we note: 

1. The in-phase component of the load voltage equals half of the source voltage,  and 

2. The square of the receiving voltage magnitude equals the ρ magnitude. 

The product of Vu
* Vl

* equals ρ∠β. 

The voltage Vl equals the voltage Vz.   

For leading power factor situations, we believe the system operator needs to become aware that the 

vector voltage drop across the transmission path is important.  AEP has discussed this concern with 

our system operators. 

The triangles describe several voltage stability measures namely TVSI and ∆. 

We utilized the Load Flow Voltage Discriminant Triangle in a practical system study report to identify 

circuits closest to the critical bifurcation point. 

We note throughout the paper, the results of the triangles are consistent with the findings in the 

literature in [ 1,2,4,5,7,9]. 
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