Software Tools and Analysis Methods for Integrated T&D Systems

Mark McGranaghan
Vice President, Power Delivery and Utilization

Distribution Systems Integration
October 21, 2014
Agenda

1. Introduction and Objectives – Mark McGranaghan (EPRI)

2. Utility Perspective – Kevin Jones (Dominion Resources)

3. Software provider perspective – Joe Hood (Siemens/PTI)

4. University perspective – Surya Santoso (University of Texas)

5. R&D Perspective and New Approaches – Jeff Dagle (PNNL)
Integrated Grid Vision

Power System that is Highly **Flexible, Resilient and Connected** and Optimizes Energy Resources
The integrated grid allows Local Energy Optimization to become part of Global Energy Optimization.
How do we get there?

- Framework for Grid Modernization Investment Decisions
- Interconnection Technical Guidelines
- Integrated Grid Planning & Operations

Informing Policy and Regulation
The Second Decade of Synchrophasors

Five Dimensions to the Success of Synchrophasors for the Next Ten Years

CIGRE GOTF Symposium - Houston, TX
Tuesday October 21, 2014
Kevin D. Jones, Ph.D.
The First Decade of Synchrophasors

The Northeast Blackout of 2003 is arguably the strongest catalyst for the more recent success synchrophasors

- TVA Super PDC
 - Gave birth to the openPDC
 - Ready for primetime by the time the SGIG grants came around
- 2008 Hurricane Gustav at Entergy
 - Used synchrophasors to help support an island of ~250k customers
- Acknowledgement by the IEEE
 - C37.118 predates grant work
- Success of FNET
- SGIG & other stimulus grants
 - Dominion project completed 10 years & 5 days after 2003 blackout
What will be critical to success of synchrophasor technology over the next ten years?

Top Five Key Dimensions
More Synchrophasors

- Appears obvious but still needs said
 - Value in PMU footprints of all sizes but…
 - Small footprints yield niche applications while large footprints yield applications which are widespread, interoperable, prolific

- Championing sustainable continued deployment
 - Dominion has substation construction standards which dictate PMU/PDC installation for any control house visited for normal project work.

- Some deployment numbers
 - Original grant – 80 PMUs, 39 PDCs, 21 Control Houses in total
 - Up to present day – 141 PDCs
 - After the next 5 years – ~300 Control Houses in total
 - Approximately 0.01% of total capital expenditure on PMUs over next 5 years

Key Takeaway: Synchrophasors are a fundamental, foundational technology. Bolt-on strategies won’t see long term success in this space.
Enterprise Class & Operational Data Analytics

Three Components to Data Analytics

- **Next Generation Grid Data Architectures**
 - How you get/access/store/move/etc the data
 - Lots of great conversations across the industry right now (GPA, UTK, etc)

- **Robust Synchrophasor Data Quality**
 - Commitment to data quality is key
 - Need the ‘complete package’ for data quality

- **Synchrophasor Data Analytics**
 - Synchrophasor data is full of information
 - Phasor data analytics impacts most business units in electric transmission
 - Real time operations, asset management, planning, modeling, etc

Key Takeaway: Data is an asset just like a TX or TL. To extract its full value, the complete package of grid data architecture, data quality, and data analytics are critical
Mature Data Visualization

- Data vis. is important inside *and* outside operating room
- Varying degrees of maturity
- Data visualization should be simplistic to drive adoption/trust
 - Seeing PMU data in traditional forms can be very effective for adoption
 - Basic trending, strip-charting, schematic one-lines, frequency topos
 - Host visualization in common areas to ‘*make synchrophasor data real*’
- Existing tools are not end-all-be-all of data visualization
 - Some have shot for the moon… and flopped
 - Some have seen success with simplistic visualization like basic trending, strip-charting, schematic one-lines, etc but this should not be the last word in data visualization for synchrophasors

Key Takeaway: *Advanced visualizations aren’t necessarily mature. Start with simple, trust building interfaces and add complexity as the end user evolves.*
A Total Pivot to Open Source

- Our industry has one of the lowest OSS utilization rates
- The evidence for the benefits of OSS are readily available
- Software vendors business models will start to transform

Why Open Source?
- Public Domain ≠ Open Source
- Generating user base provides mechanisms for growth and support
 - *It's all about the numbers!*
 - *Utility industry is very specialized – small numbers*
- University use increases user base and trains engineers of tomorrow
 - *Bridges technology transfer gap; decreases cost of innovation*
 - *Young talent loves to code*

Key Takeaway: Open source software will be a game changer for the industry over the next ten years because of the user-developer.
People

- People are at the heart of innovation
 - People make comprehensive substation standards
 - People develop/integrate/utilize world class data analytics
 - People digest information through mature data visualization
 - People form communities to develop the tools of our GOTF
 - People adopt new technologies

- Our industry has not yet mastered...
 - Workforce planning & talent acquisition
 - Self promotion – synchrophasors need to be sexy!
 - Training programs & knowledge retention

Key Takeaway: Without the right people, any new tool or technology will fail. People are the most critical key to the GOTF
Conclusion

5 Keys to Success for Synchrophasors

- **More Synchrophasors**
 - Organic continued deployment through strategic standardization

- **Enterprise Class & Operational Data Analytics**
 - Next gen. data arch. data quality, analytics for ‘complete package’

- **Mature Data Visualizations**
 - Start simplistic \rightarrow build trust \rightarrow evolve

- **A Total Pivot to Open Source**
 - The rise of the *user-developer*

- **People**
 - Hire rockstars
Contacts

For more information contact:

Kevin D. Jones, Ph.D.
Electric Transmission Operations Planning
Dominion Virginia Power
804-380-0658
304-767-4748
kevin.d.jones@dom.com
Software Provider Perspective

CIGRE Grid of the Future Symposium

Joe Hood, PE
Product Manager for PSS®E
Siemens PTI
Simulation is not about producing numbers; it’s about providing insight.

John Undrill
Distributed and Cloud Computing

Parallelized simulation engines in PSS® Suite

Millions of powerflow contingencies in minutes

Thousands of dynamic simulations in minutes

True real-time transient stability assessment

Several pilot projects underway
Data Visualization

Faster hardware = more output

Exploring advanced visualization techniques

Help users gain insight from all the numbers

Contingency Analysis, Transient Stability, PV/QV

Visualize trends, norms, outliers and metrics that emerge from the raw output
Blurred Lines:

• Operations and Planning
• Transmission and Distribution

PSS®ODMS and PSS®E solutions create a proven, robust link between Operations and Planning

Powerful CIM-based model management

Node-breaker capability coming to PSS®E

PSS®SINCAL: Advanced distribution planning for distributed generation and micro-grids

Advanced load models across PSS® Suite
Coming Soon

Webinar: CIMplify your Network Model Management with PSS®ODMS

- November 4, 2014.

PSS®E 34 with Node-breaker Modeling

- Release scheduled for December 2014
- Webinars to follow in January 2015
- Demos and trials will be available

Joe Hood, PE
PSS®E /PSS®MUST Product Manager
Siemens Power Technologies International
Tel: +1.803.397.8539
joseph.hood@siemens.com
www.siemens.com/power-technologies
Software Tools and Methodologies for Future T&D Systems

University Perspective
Surya Santoso
The University of Texas at Austin

Tuesday, Oct. 21, 2014
Houston, TX
Panel Session on Advanced Tools and Methods for T&D Analysis: University Perspective

• Educating future generation of engineers:
 – B.S. and M.S. degree programs: well-rounded power engineers, knowledgeable in embedded systems, data and signal processing, communication and networks, and software/enterprise systems, ...
 – Ph.D. degree program: research-based with narrow focus on specific subjects in T&D analysis (e.g.: power quality, fault locating methods, network topology)

• Research:
 – Students: Abundance in qualified students applying to Ph.D. program, mature, highly motivated, the cream of the crop.
 – Emphasis: Original contribution on specific topics:
 • Advancing the state of the art
 • Transformative, and high impact.
Panel Session on Advanced Tools and Methods for T&D Analysis

• University-industry collaboration:
 – University: a community of scholars with diverse expertise
 – Industry: real-world, economic reality
 – Research topics should more endogenous than exogenous to the real-world.

• Sample research topics
 – Methods for determining PV hosting capacity in distribution circuits
 – Methods and tools for grid impact and cost-benefit analyses of bulk DER integration.
 – Managing wind and PV variability
Advanced T&D Protection and Relaying

PSCAD Instance 1:
Power System Model

Traditional Relay Logic

Local V,I measurement

Bus 5

PSCAD Instance 2:
Relay Simulation Model

Relay Simulation Model:
expected fault condition

Supervisory Logic

Trip signal

V_{bus2,meas} V_{bus4,meas} V_{bus5,meas}

V_{bus2,sim} V_{bus4,sim} V_{bus5,sim}

Z_f \leq \theta_f

Master Trip Signal

Bus 4

Bus 2
R&D Perspective and New Approaches

Jeff Dagle, PE
Chief Electrical Engineer and Team Lead
Electricity Infrastructure Resilience
Pacific Northwest National Laboratory
Richland, Washington
+1 (509) 375-3629
jeff@pnnl.gov

The Grid of the Future Symposium - hosted by the CIGRÉ (The Council on Large Electric Systems)
U.S. National Committee and the Electric Power Research Institute (EPRI)

Panel Session: Software tools and methodologies for modeling, analysis, planning, asset management, and operations of future T&D systems

Houston, Texas
October 21, 2014
Our approach: Improve power system performance and transmission reliability by extracting greater value from grid measurements and data. Key elements include:

► U.S. DOE’s lead for the North American Synchrophasor Initiative (NASPI), a joint effort with the North American Electric Reliability Council (NERC) and industry to build out phasor measurement units (PMUs) across North America, enabling increased situational awareness and control

► Planning models validation through measurement-based analysis

► Decision support tools for operators
 ■ Mode meter – uses PMU data to improve detection of grid disturbances, enabling greater asset use and preventative measures; deployed in Western Interconnection Synchrophasor Project

► EIOC – providing utilities, vendors and researchers access to real-time grid data for testing in realistic operations environment
Our approach: leverage high-performance computing (HPC) and new algorithms to provide real-time tools for prediction and response.

- Accelerating speed of existing tools/functions
 - State estimation
 - “N–2” contingency analysis
- Developing entirely new tools/functions
 - Predictive state estimation (dynamic, predictive, fast, global)
 - “N–k” contingency analysis (decision support for complex issues)
 - Look-ahead dynamic simulation (faster than real-time simulations)
- Integrating currently independent functions
 - Operations and planning
 - Transmission and distribution
 - Power grid and data network

Technology Challenge

Translate vast amounts of real-time data into actionable knowledge to enable unparalleled grid planning and operations.
Our answer - Future Power Grid Initiative

The Future Power Grid Initiative (FPGI)
- A multi year, multi million dollar, interdisciplinary initiative
- Funded through PNNL’s Laboratory Directed Research and Development Program
- Led by Henry Huang, Ph.D., P.E.
- and Jeff Dagle, P.E.

Approach
- Combining PNNL’s distinctive capabilities in power systems, data-intensive high-performance computing and visual analytics
 - Designing computational approaches to deliver a new class of real-time tools for grid modeling and simulation
 - Expanding power grid networking to support large scale and secure real-time data flow
 - Advancing state-of-the-art visual analytics to convert very large volumes of multi-domain real-time data into actionable information
PNNL Future Power Grid Initiative

GridOPTICS™ – a suite of tools to enable three fusions:

- Bridging **operation** and **planning** to enable more seamless grid management and control
 - Remove overhead involved in communication between operation and planning
 - Improve response when facing emergency situations
- Integrating **transmission** and **distribution** in end-to-end grid modeling and simulation capable of handling 10^9 devices with uncertainty
 - Understand the emerging behaviors in the power grid due to smarter loads, mobile consumption, and intermittent generation
- Managing interdependency between power **grid** and **data** network (a test lab for power grid data networking is being set up)
 - Enable “all-hazard” analysis
 - Prepare grid operators and planners with the knowledge of data network impact on the power grid